Highest vectors of representations (total 12) ; the vectors are over the primal subalgebra. | \(g_{4}+g_{-1}\) | \(-h_{3}+h_{2}\) | \(-h_{4}+h_{1}\) | \(g_{1}+g_{-4}\) | \(g_{7}\) | \(g_{3}\) | \(g_{2}\) | \(g_{5}\) | \(g_{9}\) | \(g_{10}\) | \(g_{6}\) | \(g_{8}\) |
weight | \(0\) | \(0\) | \(0\) | \(0\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(2\psi_{1}-4\psi_{2}\) | \(0\) | \(0\) | \(-2\psi_{1}+4\psi_{2}\) | \(\omega_{1}-4\psi_{1}-2\psi_{2}\) | \(\omega_{1}-6\psi_{1}+2\psi_{2}\) | \(\omega_{1}+6\psi_{1}-2\psi_{2}\) | \(\omega_{1}+4\psi_{1}+2\psi_{2}\) | \(2\omega_{1}+2\psi_{1}-4\psi_{2}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}-2\psi_{1}+4\psi_{2}\) |
Isotypical components + highest weight | \(\displaystyle V_{2\psi_{1}-4\psi_{2}} \) → (0, 2, -4) | \(\displaystyle V_{0} \) → (0, 0, 0) | \(\displaystyle V_{-2\psi_{1}+4\psi_{2}} \) → (0, -2, 4) | \(\displaystyle V_{\omega_{1}-4\psi_{1}-2\psi_{2}} \) → (1, -4, -2) | \(\displaystyle V_{\omega_{1}-6\psi_{1}+2\psi_{2}} \) → (1, -6, 2) | \(\displaystyle V_{\omega_{1}+6\psi_{1}-2\psi_{2}} \) → (1, 6, -2) | \(\displaystyle V_{\omega_{1}+4\psi_{1}+2\psi_{2}} \) → (1, 4, 2) | \(\displaystyle V_{2\omega_{1}+2\psi_{1}-4\psi_{2}} \) → (2, 2, -4) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0) | \(\displaystyle V_{2\omega_{1}-2\psi_{1}+4\psi_{2}} \) → (2, -2, 4) | |||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | \(W_{11}\) | ||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
|
|
|
|
|
| Semisimple subalgebra component.
|
|
| ||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(0\) | \(0\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | ||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(2\psi_{1}-4\psi_{2}\) | \(0\) | \(-2\psi_{1}+4\psi_{2}\) | \(\omega_{1}-4\psi_{1}-2\psi_{2}\) \(-\omega_{1}-4\psi_{1}-2\psi_{2}\) | \(\omega_{1}-6\psi_{1}+2\psi_{2}\) \(-\omega_{1}-6\psi_{1}+2\psi_{2}\) | \(\omega_{1}+6\psi_{1}-2\psi_{2}\) \(-\omega_{1}+6\psi_{1}-2\psi_{2}\) | \(\omega_{1}+4\psi_{1}+2\psi_{2}\) \(-\omega_{1}+4\psi_{1}+2\psi_{2}\) | \(2\omega_{1}+2\psi_{1}-4\psi_{2}\) \(2\psi_{1}-4\psi_{2}\) \(-2\omega_{1}+2\psi_{1}-4\psi_{2}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}-2\psi_{1}+4\psi_{2}\) \(-2\psi_{1}+4\psi_{2}\) \(-2\omega_{1}-2\psi_{1}+4\psi_{2}\) | ||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{-2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-4\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}-4\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-6\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}-6\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+6\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}+6\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+4\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}+4\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{1}-4\psi_{2}}\oplus M_{2\psi_{1}-4\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{1}+4\psi_{2}}\oplus M_{-2\psi_{1}+4\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}+4\psi_{2}}\) | ||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{2\psi_{1}-4\psi_{2}}\) | \(\displaystyle 2M_{0}\) | \(\displaystyle M_{-2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-4\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}-4\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-6\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}-6\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+6\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}+6\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+4\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}+4\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{1}-4\psi_{2}}\oplus M_{2\psi_{1}-4\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{1}+4\psi_{2}}\oplus M_{-2\psi_{1}+4\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}+4\psi_{2}}\) |